
Binding python to other
languages (Fortran and C)

Overview

• One of the beauties of python is the ease with which
you can bind it to low-level programming languages.

• Allows python to be a scripting interface on top of
optimised CPU-intensive processing code.

• Examples are CDAT and MetPy developed by
ECMWF.

• Numerous packages are available to do this.
• Here we present Pyfort, F2PY for Fortran bindings

and a quick look at C bindings (using SWIG).

Locating and installing the packages

• You can freely download the packages at:
– Pyfort - http://pyfortran.sourceforge.net
– F2PY - http://cens.ioc.ee/projects/f2py2e

• Installation:
– Both Pyfort and F2PY are now installed as part of CDAT and

so is already available on a number of our linux machines
under the directory:

<your_cdat>/bin/[pyfort|f2py]

*Much of the information in this document was stolen from:
http://www.prism.enes.org/WPs/WP4a/Slides/pyfort/pyfort.html

http://pyfortran.sourceforge.net/
http://cens.ioc.ee/projects/f2py2e
http://www.prism.enes.org/WPs/WP4a/Slides/pyfort/pyfort.html

Pyfort Usage: Overview (1)

The interface to pyfort is relatively simple:

1. Pyfort takes a file or number of files holding
Fortran functions and/or subroutines.

2. These are compiled and linked to a library.

3. The user then hand edits a Pyfort (.pyf) text file
describing the interface to each
function/subroutine.

Pyfort Usage: Overview (2)

4. The pyfort command is then run with the
necessary arguments to produce some C code to
describe the Fortran interface to python. Pyfort
automatically compiles this C code into what is
called a Python Extension Module (.so).

5. The Python Extension Module can then be
imported directly into python with the
functions/subroutines visible as module level
python functions.

Pyfort Usage: Overview (3)

• Once you have created a Python Extension
Module using Pyfort:

– you will always have access to it at the Python level

– from the user’s perspective it is imported just like any other
Python function.

Pyfort: A simple example (1)

• Below is a basic Fortran subroutine that has been connected to
python. It demonstrates the use of the Pyfort interface without
any complex code to confuse you:

• The itimes.f file contains the subroutine itimes which takes in
two Numeric arrays (x and y) of length n and returns an array
(w) of the same length where w(i)=x(i)*y(i).

subroutine itimes(x,y,n,w)
integer x(*)
integer y(*)
integer w(*)
integer n
integer i
do 100 i=1,n
w(i) = x(i) * y(i)

100 continue
return
end

Pyfort: A simple example (2)

• The “itimes.f” file is compiled as follows:

$ g77 -c itimes.f # or use your compiler

• The compiled subroutine is then linked into a fortran
library called libitimes.a:

$ ld -r -o libitimes.a itimes.o

Pyfort: A simple example (3)

• Must then write a Pyfort script declaring the parameters
involved called itimespyf.pyf:
SUBROUTINE ITIMES(X, Y, N, W)
! times (x,y,n,x) sets (i)=x(i)*y(i), i=1,n
integer, intent(in):: x(n), y(n) ! must have

size n
integer, intent(out)::w(n)
integer n
END SUBROUTINE itimes

• Finally, run Pyfort with the following arguments to produce the
C code that glues it all together (this allows you to call the
module and functions from python):

$ pyfort -c g77 -i -l./itimes itimespyf.pyf

Pyfort: A simple example (4)

• The output of this compilation was the production of a Python
Extension Module called itimespyf.so located at:

./build/lib.linux-i686-2.2/itimespyf.so

• You can then import this module directly into python and call
the subroutine as python functions:
>>> import sys
>>> sys.path.append('build/lib.linux-i686-2.2')
>>> import itimespyf, Numeric
>>> x=Numeric.array([1,2,3])
>>> y=Numeric.array([4,5,6])
>>> n=len(x)
>>> print "itimes", x, y
itimes [1,2,3] [4,5,6]
>>> print testpyf.itimes(x,y,n)
[4,10,18]

F2PY Usage: Overview (1)

• F2PY demonstrates greater functionality than Pyfort,
for example you can return character arrays, deal
with allocatable arrays and common blocks,
which pyfort does not allow.

• The F2PY interface is potentially simpler than that
for Pyfort, but there are various methods you can
choose from. The F2PY documentation takes you
through these methods.

F2PY: A simple example (1)

1. Create a fortran file such as hello.f:
C File hello.f

subroutine foo (a)
integer a
print*, "Hello from Fortran!"
print*, "a=",a
end

2. Run F2PY on the file:
$ f2py -c -m hello hello

F2PY: A simple example (2)

• Run python and import the module, then call the
subroutine as a function:

$ python
>>> import hello
>>> hello.foo(34)
‘Hello from Fortran!’
a= 34

Choosing between Pyfort and F2PY

• F2PY is the more comprehensive of the two
packages (providing support for returning
character arrays, simple F90 modules, common
blocks, callbacks and allocatable arrays) but if
pyfort does what you want, it may be easier to get to
grips with.

• Both Pyfort and F2PY are useful tools and
deciding on which one to use will depend on a
number of issues. In theory, using either tool should
be a quick (less than 1 hour) job but determining the
duration will depend on issues such as:

How to choose

• Which package am I experienced with?
• Which package is available already on my platform?
• How long does it take to install (if not already present)?
• Which Fortran compiler am I using?
• Can I get away with the quick F2PY solution that involves

no hand editing of files?
• Do I need to return character arrays from my subroutine

(in which case you need to use F2PY)?
• Am I using callbacks (need F2PY again)?
• Do I need to handle F90 modules (need F2PY again)?
• Do I need to use Common Blocks (need F2PY again)?
• Does my code use Allocatable Arrays (need F2PY again)?

Python to C/C++ binding with SWIG
(Simplified Wrapper and Interface Generator)

• SWIG is a useful tool that allows you to create python
wrappers for C code with very little knowledge of the
Python C API (but it might not always work).

• It works by taking the declarations found in C/C++
header files and using them to generate the wrapper
code that scripting languages need to access the
underlying C/C++ code.

• The SWIG interface compiler also connects
programmes written in C and C++ with other
languages including Perl, Ruby, and Tcl.

*Much of the information in this document was stolen from the official
python documentation at:

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

SWIG Example (1)

*Much of the information in this document was stolen from the official
python documentation at:

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

SWIG Example (2)

*Much of the information in this document was stolen from the official
python documentation at:

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

http://www.swig.org/papers/PyTutorial98/PyTutorial98.pdf

	Binding python to other languages (Fortran and C)
	Overview
	Locating and installing the packages
	Pyfort Usage: Overview (1)
	Pyfort Usage: Overview (2)
	Pyfort Usage: Overview (3)
	Pyfort: A simple example (1)
	Pyfort: A simple example (2)
	Pyfort: A simple example (3)
	Pyfort: A simple example (4)
	F2PY Usage: Overview (1)
	F2PY: A simple example (1)
	F2PY: A simple example (2)
	Choosing between Pyfort and F2PY
	How to choose
	Python to C/C++ binding with SWIG �(Simplified Wrapper and Interface Generator)
	SWIG Example (1)
	SWIG Example (2)

